Center Innovation Fund: AFRC CIF

Inverse Finite Method Investigation for Adaptive Structures (iFEM)

Completed Technology Project (2012 - 2016)

Project Introduction

This research project is evaluating an innovative technique that uses fiber optic strain sensors to measure structural deformations and full field strains. An inverse finite element method (iFEM) analysis reconstructs a deformed structural shape based on the strain measurement data simulated by FEM analysis to represent the *in-situ* strain measurements. By mapping the iFEM displacement solution onto a full FEM model, without the applied loading, the complete fields of displacement, strain, and stress are reconstructed to a high degree of accuracy. This project supports the work on multiple flight research projects at NASA Armstrong.

Work to date: The team has completed and validated a 1-dimensional beam element test using a compliant slider mechanism.

Looking ahead: Future plans involve developing and validating the algorithm on a full size flight test article.

Benefits

- **Accurate**: Algorithm is capable of accurate full-field structural shape and strain measurement
- **Economical**: Uses a minimum number of sensors to recreate the full-field structural deformations and strains
- Improves safety: Enables more efficient health monitoring of control surfaces and flexible structures

Applications

- Aircraft wing flaps
- Helicopter blades
- Motor vehicles
- Trains
- Ships and submersibles
- Wind turbines

This research project is evaluating an innovative technique that uses fiber optic strain sensors to measure structural deformations and full field strains. An inverse finite element method (iFEM) analysis reconstructs a deformed structural shape based on the strain measurement data simulated by FEM analysis to represent the *in-situ* strain measurements. By mapping the iFEM displacement solution onto a full FEM model, without the applied loading, the complete fields of displacement, strain, and stress are reconstructed to a high degree of accuracy. This project supports the work on multiple flight research projects at NASA Armstrong.

Work to date: The team has completed and validated a 1-dimensional beam element test using a compliant slider mechanism.

Looking ahead: Future plans involve developing and validating the algorithm

NASA Flight Test Research Project - one of the applications of the inverse finite element method (iFEM) analysis

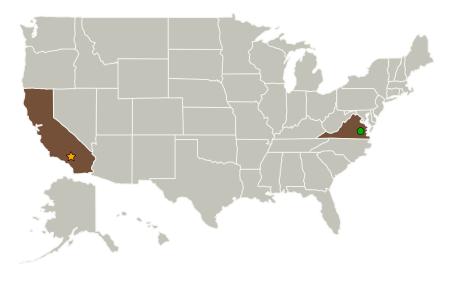
Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	2	
Organizational Responsibility		
Project Management		
Images	3	
Technology Maturity (TRL)	3	
Technology Areas	3	

Center Innovation Fund: AFRC CIF

Inverse Finite Method Investigation for Adaptive Structures (iFEM)

Completed Technology Project (2012 - 2016)


on a full size flight test article.

Anticipated Benefits

This technology is being explored on NASA funded projects for deformation and full field strain measurement. It provides the following benefits:

- **Accurate**: Algorithm is capable of accurate full-field structural shape and strain measurement
- **Economical**: Uses a minimum number of sensors to recreate the full-field structural deformations and strains
- **Improves safety**: Enables more efficient health monitoring of control surfaces and flexible structures

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Armstrong Flight Research Center(AFRC)	Lead	NASA	Edwards,
	Organization	Center	California
Langley Research Center(LaRC)	Supporting	NASA	Hampton,
	Organization	Center	Virginia

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Armstrong Flight Research Center (AFRC)

Responsible Program:

Center Innovation Fund: AFRC CIF

Project Management

Program Director:

Michael R Lapointe

Program Manager:

David F Voracek

Principal Investigator:

Eric J Miller

Co-Investigator:

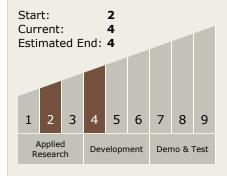
Alexander Tessler

Center Innovation Fund: AFRC CIF

Inverse Finite Method Investigation for Adaptive Structures (iFEM)

Completed Technology Project (2012 - 2016)

Primary U.S. Work Locations	
California	Virginia


Images

NASA Flight Test Research Project

NASA Flight Test Research Project - one of the applications of the inverse finite element method (iFEM) analysis (https://techport.nasa.gov/imag e/6557)

Technology Maturity (TRL)

Technology Areas

Primary:

- TX12 Materials, Structures, Mechanical Systems, and Manufacturing
 - └ TX12.3 Mechanical Systems
 - └─ TX12.3.4 Reliability, Life Assessment, and Health Monitoring

